Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dong-Dong Lin, Yu Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
ωR factor $=0.092$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis(benzimidazole- κN)(malonato$\left.\kappa^{2} O, O^{\prime}\right)$ cobalt (II)

The title cobalt(II) compound, $\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$, displays an octahedral coordination geometry formed by four benzimidazole ligands and one malonate dianion. The malonate chelates to the $\mathrm{Co}^{\mathrm{II}}$ atom with both terminal carboxyl groups in a boat configuration. The uncoordinated carboxyl O atoms of the malonate are hydrogen bonded to the neighboring benzimidazole ligands.

Comment

Aromatic $\pi-\pi$-stacking interactions have been observed in a number of metal complexes with aromatic heteropolycyclic ligands, such as phenathroline, bithiazole and benzimidazole (Chen et al., 2003). As part of our investigation into the $\pi-\pi-$ stacking interactions in metal complexes, a new $\mathrm{Co}^{\mathrm{II}}$ complex with benzimidazole has recently been prepared. However, its X-ray structure, presented here, shows no $\pi-\pi$ stacking occurring in the complex.

The molecular structure of (I) is presented in Fig. 1. Four benzimidazole molecules and one malonate dianion form an octahedral coordination geometry around a $\mathrm{Co}^{\mathrm{II}}$ atom. The $\mathrm{Co}-\mathrm{N} 13-\mathrm{C} 19$ angle of $133.02(17)^{\circ}$ is much larger than the $\mathrm{Co}-\mathrm{N} 13-\mathrm{C} 12$ angle of $122.45(19)^{\circ}$. Likewise the $\mathrm{Co}-$ N33-C39 angle of 134.97 (17) ${ }^{\circ}$ is much larger than the Co-N33-C32 angle of $120.99(19)^{\circ}$. However, the Co-N bonds involving atoms N13 and N33 are not significantly longer than the other two $\mathrm{Co}-\mathrm{N}$ bonds (Table 1).

The malonate dianion chelates to the $\mathrm{Co}^{\mathrm{II}}$ atom with both terminal carboxyl groups in a boat configuration. The uncoordinated carboxyl O atoms of the malonate are hydrogen bonded to the neighboring benzimidazole ligands, as shown in Fig. 2. A three-centered hydrogen bond occurs between benzimidazole atom N31 and the carboxyl groups (see Table 2). The molecular packing diagram is illustrated in Fig. 3. No $\pi-\pi$ stacking is observed between benzimidazole rings in the crystal.

Experimental

An ethanol solution (10 ml) of benzimidazole ($0.47 \mathrm{~g}, 4 \mathrm{mmol}$) was mixed with an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}$,

Received 29 July 2003 Accepted 13 August 2003 Online 23 August 2003

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids.

A diagram showing the hydrogen bonding between uncoordinated carboxyl O atoms and benzimidazole ligands. [Symmetric codes: (v) $x-1, y, z$; (vi) $1-x,-y, 1-z$; (vii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (viii) $\frac{1}{2}+x, \frac{1}{2}-y$, $\left.\frac{1}{2}+z\right]$.

1 mmol) at room temperature. An aqueous solution (6 ml) containing malonic acid $(0.10 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.11 \mathrm{~g}, 1 \mathrm{mmol})$ was added to the above solution with stirring at room temperature. Then the mixture was refluxed for 1 h and filtered. Blue single crystals were obtained after 3 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$
$M_{r}=6333.53$
Monoclinic, $P 2_{1} / n$
$a=9.2068(12) \AA$
$b=25.0492(16) \AA$
$c=13.8555(13) \AA$
$\beta=109.444(15)^{\circ}$
$V=3013.2(6) \AA^{3}$
$Z=4$
$D_{x}=1.396 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 18608
reflections
$\theta=2.0-25.0^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Prism, blue
$0.22 \times 0.15 \times 0.10 \mathrm{~mm}$

Figure 3
The molecular packing diagram.

Data collection
Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.868, T_{\text {max }}=0.932$
20267 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.092$
$S=1.09$
5357 reflections
397 parameters
H -atom parameters constrained

5357 independent reflections 4289 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-11 \rightarrow 10$
$k=-30 \rightarrow 30$
$l=-14 \rightarrow 16$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0381 P)^{2}\right.$
$+1.1717 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Co-O3	$2.0684(18)$	Co-N23	$2.122(2)$
Co-O1	$2.0741(17)$	Co-N13	$2.129(2)$
Co-N43	$2.098(2)$	Co-N33	$2.138(2)$
C12-N13-Co	$122.45(19)$	C32-N33-Co	$120.99(19)$
C19-N13-Co	$133.02(17)$	C39-N33-Co	$134.97(17)$
C22-N23-Co	$128.66(19)$	C42-N43-Co	$125.23(18)$
C29-N23-Co	$126.61(16)$	C49-N43-Co	$129.37(18)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O}{ }^{\text {i }}$	0.86	1.86	2.709 (3)	169
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{O} 4^{\text {ii }}$	0.86	1.93	2.764 (3)	162
$\mathrm{N} 31-\mathrm{H} 31 \cdots \mathrm{O} 1^{\text {iii }}$	0.86	2.06	2.870 (3)	156
$\mathrm{N} 31-\mathrm{H} 31 \cdots \mathrm{O} 2^{\text {iii }}$	0.86	2.31	3.045 (3)	143
$\mathrm{N} 41-\mathrm{H} 41 \cdots \mathrm{O} 4^{\text {iv }}$	0.86	1.98	2.741 (3)	147

Symmetry codes: (i) $1+x, y, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $1-x,-y, 1-z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.

H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (benzimidazole) or $0.97 \AA$ (malonate) and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$, and were allowed for in the final cycles of refinement in the riding mode, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC \& Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Jian-Ming Gu for assistance with the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

