Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Dong Lin, Yu Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.045 wR factor = 0.092 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(benzimidazole- κN)(malonato- $\kappa^2 O, O'$)cobalt(II)

The title cobalt(II) compound, $[Co(C_3H_2O_4)(C_7H_6N_2)_4]$, displays an octahedral coordination geometry formed by four benzimidazole ligands and one malonate dianion. The malonate chelates to the Co^{II} atom with both terminal carboxyl groups in a boat configuration. The uncoordinated carboxyl O atoms of the malonate are hydrogen bonded to the neighboring benzimidazole ligands.

Received 29 July 2003 Accepted 13 August 2003 Online 23 August 2003

Comment

Aromatic π - π -stacking interactions have been observed in a number of metal complexes with aromatic heteropolycyclic ligands, such as phenathroline, bithiazole and benzimidazole (Chen *et al.*, 2003). As part of our investigation into the π - π -stacking interactions in metal complexes, a new Co^{II} complex with benzimidazole has recently been prepared. However, its X-ray structure, presented here, shows no π - π stacking occurring in the complex.

The molecular structure of (I) is presented in Fig. 1. Four benzimidazole molecules and one malonate dianion form an octahedral coordination geometry around a Co^{II} atom. The Co-N13-C19 angle of 133.02 (17)° is much larger than the Co-N13-C12 angle of 122.45 (19)°. Likewise the Co-N33-C39 angle of 134.97 (17)° is much larger than the Co-N33-C32 angle of 120.99 (19)°. However, the Co-N bonds involving atoms N13 and N33 are not significantly longer than the other two Co-N bonds (Table 1).

The malonate dianion chelates to the Co^{II} atom with both terminal carboxyl groups in a boat configuration. The uncoordinated carboxyl O atoms of the malonate are hydrogen bonded to the neighboring benzimidazole ligands, as shown in Fig. 2. A three-centered hydrogen bond occurs between benzimidazole atom N31 and the carboxyl groups (see Table 2). The molecular packing diagram is illustrated in Fig. 3. No π - π stacking is observed between benzimidazole rings in the crystal.

An ethanol solution (10 ml) of benzimidazole (0.47 g, 4 mmol) was

mixed with an aqueous solution (10 ml) of $CoCl_2 \cdot 6H_2O$ (0.24 g,

Experimental

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids.

Figure 2

A diagram showing the hydrogen bonding between uncoordinated carboxyl O atoms and benzimidazole ligands. [Symmetric codes: (v) x - 1, y, z; (vi) 1 - x, -y, 1 - z; (vii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z;$ (viii) $\frac{1}{2} + x, \frac{1}{2} - y,$ $\frac{1}{2} + z].$

1 mmol) at room temperature. An aqueous solution (6 ml) containing malonic acid (0.10 g, 1 mmol) and Na₂CO₃ (0.11 g, 1 mmol) was added to the above solution with stirring at room temperature. Then the mixture was refluxed for 1 h and filtered. Blue single crystals were obtained after 3 d.

Crystal data

$[Co(C_3H_2O_4)(C_7H_6N_2)_4]$	$D_x = 1.396 \text{ Mg m}^{-3}$
$M_r = 633.53$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 18608
a = 9.2068 (12) Å	reflections
b = 25.0492 (16) Å	$\theta = 2.0-25.0^{\circ}$
c = 13.8555 (13) Å	$\mu = 0.62 \text{ mm}^{-1}$
$\beta = 109.444 \ (15)^{\circ}$	T = 295 (2) K
V = 3013.2 (6) Å ³	Prism, blue
Z = 4	$0.22 \times 0.15 \times 0.10 \text{ mm}$

Figure 3 The molecular packing diagram.

Data collection

Rigaku R-AXIS RAPID	5357 independent reflections
diffractometer	4289 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.051$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.2^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -11 \rightarrow 10$
$T_{\min} = 0.868, \ T_{\max} = 0.932$	$k = -30 \rightarrow 30$
20267 measured reflections	$l = -14 \rightarrow 16$
Refinement	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0381P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 1.1717P]
$wR(F^2) = 0.092$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
5357 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
397 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Co-O3	2.0684 (18)	Co-N23	2.122 (2)
Co-O1	2.0741 (17)	Co-N13	2.129 (2)
Co-N43	2.098 (2)	Co-N33	2.138 (2)
C12-N13-Co	122.45 (19)	C32-N33-Co	120.99 (19)
C19-N13-Co	133.02 (17)	C39-N33-Co	134.97 (17)
C22-N23-Co	128.66 (19)	C42-N43-Co	125.23 (18)
C29-N23-Co	126.61 (16)	C49-N43-Co	129.37 (18)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N11-H11···O2 ⁱ	0.86	1.86	2.709 (3)	169
$N21 - H21 \cdots O4^{ii}$	0.86	1.93	2.764 (3)	162
$N31 - H31 \cdots O1^{iii}$	0.86	2.06	2.870 (3)	156
N31-H31···O2 ⁱⁱⁱ	0.86	2.31	3.045 (3)	143
$N41 - H41 \cdots O4^{iv}$	0.86	1.98	2.741 (3)	147

Symmetry codes: (i) 1 + x, y, z; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) 1 - x, -y, 1 - z; (iv) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}.$

H atoms were included in the riding-model approximation, with C-H distances of 0.93 Å (benzimidazole) or 0.97 Å (malonate) and N-H distances of 0.86 Å, and were allowed for in the final cycles of refinement in the riding mode, and with $U_{\rm iso}(\rm H) = 1.2U_{eq}$ of the parent atom.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC & Rigaku, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999). The authors thank Dr Jian-Ming Gu for assistance with the data collection.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. & Chiang, M. Y. (2003). *J. Coord. Chem.* **56**, 253–259.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC & Rigaku (2002). *CrystalStructure*. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.